MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Свойство централизаторов конгруэнций универсальных алгебр

Название:Свойство централизаторов конгруэнций универсальных алгебр
Просмотров:79
Раздел:Математика
Ссылка:Скачать(169 KB)
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования "Гомельский государственный университет имени Франциска Скорины" Математический факультет Кафедра алгебры и геометрии Допу

Часть полного текста документа:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

"Гомельский государственный университет имени Франциска Скорины"

Математический факультет Кафедра алгебры и геометрии

Допущена к защите

Зав. кафедрой Шеметков Л.А.

" " 2005г.

Дипломная работа

Свойство централизаторов конгруэнций универсальных алгебр

Исполнитель

студентка группы М-51

Шутова И.Н.

Руководитель

Д., ф-м н., профессор Монахов В.С.

Гомель 2005


Содержание

 

Введение

1. Основные определения и используемые результаты

2. Свойство централизаторов универсальных алгебр

3. Мультикольцо

Заключение

Список использованных источников


Введение

В теории формаций конечных групп, мультиколец и многих других алгебраических систем исключительно важную роль играют такие понятия, как локальные экраны, локальные формации, основанные на определении центральных рядов. Впервые понятие централизуемости конгруэнций было введено Смитом в работе [5]. Возникает задача согласованности определения централизуемости Смита с определением в группах и мультикольцах.Такая задача была решена в указанной работе Смита [5], где было показано:нормальная подгруппа  группы  централизует подгруппу  тогда и только тогда, когда конгруэнции,индуцированные этими нормальными подгруппами, централизуют друг друга в смысле Смита.

Возникает следующий вопрос: справедливо ли аналогичное утверждение для мультиколец, т.е. будут ли выполнятся свойства централизуемости, изложенные в работе [3], для универсальных алгебр.

В настоящей дипломной работе решается задача взаимосвязи структуры мультиколец и универсальных алгебр, получен новый результат: идеал  тогда и только тогда централизуется идеалом , когда соответствующие этим идеалам конгруэнции централизуют друг друга в смысле Смита.

Дипломная работа включает в себя введение, три параграфа и список литературы из 10 наименований.

Перейдем к краткому изложению содержания дипломной работы.

Раздел 1 является вспомогательным и включает в себя все необходимые определения и используемые результаты.

Раздел 2 носит реферативный характер. Здесь приводятся свойства централизаторов конгруэнций, доказательства которых изложены в работах [5, 6, 7].

Раздел 3 является основным. Здесь вводится определение мультикольца, определение идеала мультикольца, определение централизатора идеала и с использованием данных определений доказывается основной результат работы (теоремы 3.4. и 3.5).


1. Основные определения и используемые результаты

Определение 1.1. [1] Универсальной алгеброй, или, короче, алгеброй называется пара , где  - непустое множество,  - (возможно пустое) множество операций на .

Определение 1.2. [1] Конгруэнцией на универсальной алгебре  называется всякое отношение эквивалентности на , являющееся подалгеброй алгебры .

Определение 1.3. [1] Если  и  - алгебры сигнатуры , то отображение  называется гомоморфизмом, если для любой -арной операции  и любых элементов  выполняется равенство:

Взаимно однозначный гомоморфизм называется изоморфизмом.

Теорема 1.1. [1] Пусть  - гомоморфизм универсальных алгебр, тогда множество

является конгруэнцией на алгебре  и называется ядром гомоморфизма

Теорема 1.2. [1] Пусть  - гомоморфное наложение, тогда .

Теорема 1.3. [1] Пусть  - конгруэнции на алгебре  и , тогда .

Определение 1.4. [2] Непустой абстрактный класс алгебр  сигнатуры  называется многообразием, если  замкнут относительно подалгебр и прямых произведений.

Многообразие  называется мальцевским, если конгруэнции любой алгебры из  попарно перестановочны.

Теорема 1.4. [2] Конгруэнции любой алгебры многообразия  попарно перестановочны тогда и только тогда, когда существует термальная операция , что во всех алгебрах из  справедливы тождества

 

Определение 1.5. [3] Пусть  и  - факторы алгебры . Тогда они называются:

1) перспективными, если либо  и , либо  и ;

2) проективными, если в  найдутся такие факторы , что для любого  факторы  и  перспективны.

Теорема 1.5. [4] Между факторами произвольных двух главных рядов алгебры , принадлежащей мальцевскому многообразию, можно установить такое взаимно однозначное соответствие, при котором соответствующие факторы проективны и централизаторы в  равны.

Теорема 1.6. [2] (Лемма Цорна). ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Элективный курс по алгебре для 9-го класса на тему "Квадратные уравнения и неравенства с параметром"
Просмотров:233
Описание: Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Вятский государственный гуманитарный университет» Физико-математический факульт

Название:Зачет как одна из форм контроля знаний учащихся по алгебре в 8 классе
Просмотров:73
Описание: ГОУ СПО «Кунгурское педагогическое училище» ПЦК преподавателей естественно-математических дисциплин Допущена к защите Зам. директора по учебной работе Л.А. Патракова 2008 г. Председатель ПЦК ест

Название:Конгруэнции Фраттини универсальных алгебр
Просмотров:93
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования "Гомельский государственный университет имени Франциска Скорины" Математический факультет Кафедра алгебры и геометрииКурсо

Название:Экзаменационные вопросы и билеты по линейной алгебре за весенний семестр 2001 года
Просмотров:180
Описание: Единичная, нулевая, треугольная, симметричная, транспонированная матрицы. Примеры.
2. Сложение матриц, умножение матрицы на число, умножение матриц. Свойства ассоциативности и коммутативности матриц. Приме

Название:Методические основы уровневой дифференциации при обучении алгебре в классах с углубленным изучением математики
Просмотров:118
Описание: Наше время ставит перед школой задачу – повышение качества образования и воспитания, прочное овладение основами наук, обеспечение более высокого научного уровня преподавания каждого предмета. В школах отказыва

 
     

Вечно с вами © MaterStudiorum.ru