MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Степенные ряды

Название:Степенные ряды
Просмотров:76
Раздел:Математика
Ссылка:Скачать(70 KB)
Описание: ВЫСШАЯ МАТЕМАТИКА Степенные ряды Содержание 1. Определение степенного ряда. Теорема Абеля 2. Свойства степенных рядов 3. Ряды Тейлора, Маклорена для функций 4. Разложение некоторых элементарных функци

Часть полного текста документа:


ВЫСШАЯ МАТЕМАТИКА

Степенные ряды


Содержание

1. Определение степенного ряда. Теорема Абеля

2. Свойства степенных рядов

3. Ряды Тейлора, Маклорена для функций

4. Разложение некоторых элементарных функций в ряд Маклорена

5. Приложения степенных рядов


1. Определение степенного ряда. Теорема Абеля

Степенные ряды являются частным случаем функциональных рядов.

Определение 1.1. Степенным рядом называется функциональный ряд вида .(1.1)

Здесь  – постоянные вещественные числа, называемые коэффициентами степенного ряда; а – некоторое постоянное число, х – переменная, принимающая значения из множества действительных чисел.

При  степенной ряд (1.1) принимает вид

. (1.2)

Степенной ряд (1.1) называют рядом по степеням разности , ряд (1.2) – рядом по степеням х.

Если переменной х придать какое-либо значение, то степенной ряд (1.1) (или (1.2)) превращается в числовой ряд, который может сходиться или расходиться.

Определение 1.2. Областью сходимости степенного ряда называется множество тех значений х, при которых степенной ряд сходится.

Ряд (1.1) с помощью подстановки  приводится к более простому виду (1.2), поэтому вначале будем рассматривать степенные ряды вида (1.2).

Для нахождения области сходимости степенного ряда важную роль играет следующая теорема.

Теорема 1.1 (Теорема Абеля):

если степенной ряд (1.2) сходится при , то он абсолютно сходится при всех значениях х, удовлетворяющих неравенству ; если же ряд (1.2) расходится при , то он расходится при всех значениях х, удовлетворяющих неравенству .

Теорема Абеля дает ясное представление о структуре области сходимости степенного ряда.

Теорема 1.2:

область сходимости степенного ряда (1.2) совпадает с одним из следующих интервалов:

 

1) ; 2) ; 3) ; 4) ,

 

где R – некоторое неотрицательное действительное число или .

Число R называется радиусом сходимости, интервал  – интервалом сходимости степенного ряда (1.2).

Если , то интервал сходимости представляет собой всю числовую ось .

Если , то интервал сходимости вырождается в точку .

Замечание: если  – интервал сходимости для степенного ряда (1.2), то  – интервал сходимости для степенного ряда (1.1).

Из теоремы 1.2 следует, что для практического нахождения области сходимости степенного ряда (1.2) достаточно найти его радиус сходимости R и выяснить вопрос о сходимости этого ряда на концах интервала сходимости , т. е. при  и .

Радиус сходимости R степенного ряда можно найти по одной из следующих формул:

формула Даламбера:

;(1.3)

формула Коши:

 

.(1.4)

Если в формуле Коши , то полагают , если , то полагают .

Пример 1.1. Найти радиус сходимости, интервал сходимости и область сходимости степенного ряда .

Решение

Найдем радиус сходимости данного ряда по формуле

В нашем случае

, .

Тогда .

Следовательно, интервал сходимости данного ряда имеет вид .

Исследуем сходимость ряда на концах интервала сходимости.

При  степенной ряд превращается в числовой ряд

 .

который расходится как гармонический ряд.

При  степенной ряд превращается в числовой ряд

 .

Это – знакочередующийся ряд, члены которого убывают по абсолютной величине и . ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Непрерывность функции на интервале и на отрезке
Просмотров:310
Описание: Непрерывность функции на интервале и на отрезке   Определение 3.3 Пусть - некоторая функция, - её область определения и - некоторый (открытый) интервал (может быть, с и/или )7. Назовём функцию непрерывной на интер

Название:Проектирование рецептур буровых растворов по интервалам бурения для Приобского месторождения
Просмотров:293
Описание: Министерство образования Российской Федерации Кафедра бурения нефтяных и газовых скважин Курсовая работа по дисциплине “ Буровые промывочные растворы” Содержание  

Название:Нелинейное уравнение и интервал изоляции корня
Просмотров:192
Описание: Министерство образования РФ Рязанская государственная радиотехническая академия Кафедра ОиЭФ Контрольная работа «Нелинейное уравнение и интервал изоляции корня»Выполнил ст. гр.

Название:Определение интервалов притока и поглощения с помощью дебитомеров
Просмотров:109
Описание: Вопрос № 1.   Определение интервалов притока и поглощения с помощью дебитомеров. Обработка дебитограмм. Скважинный дебитомер или расходомер состоит из следующих основных узлов: датчика, воспринимающего

Название:Интервалы стабильности гидротермальных минералов
Просмотров:67
Описание: Интервалы стабильности гидротермальных минералов 1. Источники информации Вторичные минералы являются главными метками, определяющими условия, в которых были образованы рудные

 
     

Вечно с вами © MaterStudiorum.ru