Реферат
Тема: Комп’ютерна томографія
План:
Рентгенівська комп’ютерна томографія
Фізичні принципи комп’ютерної томографії
Діагностика
Переваги комп’ютерної томографії
Технічні розробки в області комп’ютерної томографії
Виводи
Ілюстрації
Література
Рентгенівська комп’ютерна томографія
Рентгенівська комп’ютерна томографія (КТ) - методика пошарового рентгенологічного дослідження органів і тканин із застосуванням комп'ютерної обробки множинних рентгенівських зображень, виконаних під різними кутами, з подальшою реконструкцію зображення і визначенням щільності будь-якої ділянки цих тканин.
Перші КТ були спроектовані тільки для дослідження голови, однак незабаром з'явилися і сканери для всього тіла. У теперішній час КТ можна використати для візуалізації будь-якої частини тіла.
На сучасних апаратах четвертої та п'ятої ґенерацій, які комплектовані не одним, а багатьма рентгенівськими випромінювачами (до 200), використовується дуже потужний процесор з великою швидкістю обробки інформації - до 10 мільйонів операцій за секунду. У результаті час сканування скоротився до 40-50 мілісекунд. З'явилася можливість отримувати на екрані телемонітора скорочення окремих поперечних шарів серця товщиною 1-2 міліметра.
Фізичні принципи КТ
Усі технології і методики візуалізації з використанням рентгенівських променів ґрунтуються на тому, що різні тканини послаблюють рентгенівські промені в неоднаковому ступені. При КТ рентгенівськими променями експонуються тільки тонкі шари тканини. Відсутнє нашарування інших тканин, які заважають отриманню їх чіткого зображення.
У процесі проходження крізь тканини рентгенівські промені ослабляються, частково із-за поглинання енергії, частково через розсіювання. Ослаблення можна описати слідуючим рівнянням:
I=Iос-µd,
де I - інтенсивність випромінювання, що було пропущено (випромінювання на виході із тканини), Iо - інтенсивність випромінювання, що падає (на вході в тканини), µ - так званий коефіцієнт повного лінійного ослаблення для тканини, d - це відстань, що пройшло випромінюванням крізь тканину (товщина тканини). Коефіцієнт ослаблення µ обумовлений атомним номером та електронною щільністю тканини. Чим вище атомне число та щільність електронів, тим вище коефіцієнт ослаблення. Таким чином, атомне число та щільність електронів – це два параметри, що зумовлюють якості тканини по ослаблення рентгенівського випромінювання. Необхідно враховувати, що коефіцієнт ослабления залежить також від енергії рентгенівських променів.
Вузькоколімований (обмежений) рентгенівський пучок сканує (переглядає) тіло пацієнта по колу. Проходячи через тканини, випромінювання послаблюється відповідно щільності і атомному складу цих тканин. По іншу сторону від пацієнта і трубки встановлена кругова система детекторів рентгенівського випромінювання, кожен з яких (а їхня кількість може досягати 1000 і більш) перетворюють енергію випромінювання в електричні сигнали. Ці сигнали трансформуються у цифровий код, що зберігається у пам'яті комп’ютера. Зафіксований сигнал відбиває ступінь ослаблення в певному напрямку. Обертаючись навколо пацієнта, рентгенівський випромінювач “переглядає” тіло під різноманітними ракурсами, в загальній складності під кутом 360° До кінця обертання випромінювача в пам'яті комп'ютера фіксуються сигнали від усіх детекторів.
За стандартними програмами комп'ютер переробляє отриману інформацію і розраховує внутрішню структуру об'єкту. ............