ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение
Высшего профессионального образования
"Волгоградский государственный технический университет"
Камышинский технологический институт (филиал)
Волгоградского государственного технического университета
Кафедра "Высшей математики"
Типовой расчет
Часть III
по дисциплине: "Экономико-математические методы"
на тему:
"Транспортная задача"
Выполнила:
студентка гр. КБА-081(вво)
Титова Мария Дмитриевна
Проверила:
Старший преподаватель каф. ВМ
Мягкова Светлана Васильевна
Камышин - 2009 г.
Задача I
Составить план перевозок зерна из районов А1, А2, А3, запасы которых составляют соответственно 250, 150 и 100 тыс. ц. в 5 пунктов В1, В2, В3, В4, В5, потребности которых 70, 110, 90, 130, 100 тыс. ц. Затраты на перевозку 1 тыс. ц. зерна приведены в таблице.
В1 В2 В3 В4 В5 А1 4 11 6 5 15 А2 8 7 9 13 10 А3 10 5 12 7 20
Минимизировать общие затраты на реализацию плана перевозок.
Решение:
а). Метод “северо-западного угла”. Установим характер задачи:
, итак
Þ модель задачи закрытая.
Составим распределительную таблицу:
B1 B2 B3 B4 B5 ai A1
10
70
4
110
6
70
8 20 250 A2 5 11
12
20
7
130
4 150 A3 9 7 15 10
5
100
100 bj 70 110 90 130 100
500
500
Итак, получили план X1 такой, что в пункт В1 надо отправить зерна 70 тыс. ц., а в В2 110 тыс. ц. из района А1. В пункт В3 70 тыс. ц. из района А1 и 20 тыс. ц. из района А2. В пункт В4 130 тыс. ц. из района А2 и наконец в пункт В5 100 тыс. ц из района А3. Суммарные расходы на перевозку зерна составляют:
Z(X1) =70×10+110×4+70×6+20×12+130×7+100×5 =
= 700+440+420+240+910+500=3210 руб.
б). Метод “ минимального элемента “. Составим распределительную таблицу:
B1 B2 B3 B4 B5 ai A1
10
10
4
110
6
8
130
20 250 A2
5
50
11 12 7
4
100
150 A3
9
10
7
5
90
10 5 100 bj 70 110 90 130 100
500
500
В результате полного распределения зерна получаем план X2, для которого значение целевой функции:
Z(X2) =10×10+110×4+130×8+50×5+100×4+10×9+90×5=
=100+440+1040+250+400+90+450=2770 руб.
в). Построение нового улучшенного опорного плана по методу потенциалов.
Рассмотрим опорный план, найденный по методу “минимального элемента”.
B1 B2 B3 B4 B5 ai ui A1
10
10
4
110
6
8
130
20 250 0 A2
+ 5
50
11 12 7
- 4
100
150 - 5 A3
- 9
10
7
5
90
10 + 5 100 - 1 bj 70 110 90 130 100
500
500
uj 10 4 6 8 9
Проверяем условие m+n-1=3+5-1=7, число занятых клеток удовлетворяет этому условию.
Для определения потенциалов составляем уравнения:
u1+u1=10 Пусть u1=0, тогда u1=10
u1+u2=4 u2=4
u1+u4=8 u4=8
u2+u1=5 u2=5-10=-5
u2+u5=4 u5=4-(-5) =9
u3+u1=9 u3=9-10=-1
u3+u3=5 u3=5-(-1) =6
Определяем оценки свободных клеток:
S13=6-(6+0) =0 S23=12-(6-5) =11 S34=10-(8-1) =4
S15=20-(9+0) =11 S24=7-(8-5) =4 S35=5-(9-1) =-3
S22=11-(4-5) =12 S32=7-(4-1) =4
Так как не все Sij³0, то план не оптимальный. Наиболее перспективной клеткой является клетка (3;
5), так как S35 - наименьшая. С вершиной в клетке (3;
5) строим замкнутый цикл. ............