Министерство образования и науки Республики Казахстан
Карагандинский Государственный Технический Университет
Кафедра САПР
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к курсовой работе
по дисциплине «Теория принятия решений»
Тема: «Сравнительный анализ методов оптимизации»
Караганда 2009
Введение
Необходимо выполнить оптимизацию заданных целевых функций. Определить параметры заданного геометрического тела методом многопараметрической оптимизации. В процессе решения задач оптимизации должны быть найдены такие значения проектных параметров, при которых целевая функция имеет минимум (или максимум).
Актуальность математического моделирования процессов и явлений заключается в том, что функции и методы их оптимизации, которые исследуется в данном курсовом проекте, довольно часто применяется на практике в различных сферах жизнедеятельности, и их исследование позволило бы сократить временные и материальные затраты предприятий, использующих в производстве данные математические модели.
1. Основы теории оптимизации
Оптимизация – это выбор наилучшего решения. Математическая теория оптимизации включает в себя фундаментальные результаты и численные методы, позволяющие находить наилучший вариант из множества возможных альтернатив без их полного перебора и сравнения.
Для того чтобы использовать результаты и вычислительные процедуры теории оптимизации на практике, необходимо, прежде всего, сформулировать рассматриваемую задачу на математическом языке, т.е. построить математическую модель объекта оптимизации.
Построение математических моделей оптимизации можно условно разбить на следующие основные этапы.
1. Определение границ объекта оптимизации. Необходимость этого этапа диктуется невозможностью учета и исчерпывающего описания всех сторон большинства реальных систем. Выделив главные переменные, параметры и ограничения, следует приближенно представить систему как некоторую изолированную часть реального мира и упростить ее внутреннюю структуру. Может оказаться, что первоначальные границы объекта оптимизации выбраны неудачно. Тогда в одних случаях границы системы следует расширить, а в других – сузить.
2. Выбор управляемых переменных. На этом этапе математического моделирования необходимо провести различие между теми величинами, значения которых можно варьировать и выбирать с целью достижения наилучшего результата (управляемыми переменными), и величинами, которые фиксированы или определяются внешними факторами. Определение тех значений управляемых переменных, которым соответствует наилучшая (оптимальная) ситуация, и представляет собой задачу оптимизации.
3. Формулировка математической задачи оптимизации. Объединяя результаты предыдущих этапов построения математической модели, ее записывают в виде математической задачи оптимизации, включающей построенную целевую функцию и найденные ограничения на управляемые переменные. При записи математических задач оптимизации в общем виде обычно используется следующая символика:
f(xi) ®min (max), хiÎ U
где f(xi) – целевая функция, а U – допустимое множество, заданное ограничениями на управляемые переменные. ............