MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Розв’язання системи лінійних алгебраїчних рівнянь

Название:Розв’язання системи лінійних алгебраїчних рівнянь
Просмотров:90
Раздел:Математика
Ссылка:Скачать(108 KB)
Описание: Зміст Вступ 1. Розв’язання систем лінійних рівнянь методом Жордана-Гауса 2. Метод Гауса 3. Метод Жордана-Гауса Висновки Список використаних джерел Вступ При розв’язуванні системи лінійних а

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Зміст

Вступ

1. Розв’язання систем лінійних рівнянь методом Жордана-Гауса

2. Метод Гауса

3. Метод Жордана-Гауса

Висновки

Список використаних джерел


Вступ

При розв’язуванні системи лінійних алгебраїчних рівнянь можливі такі випадки:

а) система має єдиний розв’язок;

б) система має безліч розв’язків;

в) система не має розв’язків.

У випадках а) і б) систему називають сумісною, а у випадку в) - несумісною.

Якщо система сумісна і має єдиний розв’язок то її називають визначеною, а коли безліч розв’язків - невизначеною. Випадок, коли система має кінцеве число розв’язків більше одного неможливий.

Позначимо через  матрицю системи.

.

Через  позначимо матрицю, яка одержується із матриці  шляхом приєднання стовпця вільних членів

.

Матрицю  називають розширеною матрицею системи (1).

Для того, щоб система рівнянь із  невідомих і  рівнянь була сумісною необхідно і достатньо, щоб ранг матриці системи  дорівнював рангу розширеної матриці :

.

 

Зауваження. У випадку сумісності системи система має єдиний розв’язок (визначена), коли  і нескінченну кількість розв’язків (невизначена), коли , де  - кількість невідомих.

Однорідна система  лінійних рівнянь з  невідомими має вигляд:

Однорідна система завжди сумісна, так як вона має розв'язок , який називається нульовим або тривіальним.

Якщо визначник системи , то тривіальний розв’язок буде єдиним розв’язком системи (3). Відмітимо, що ранг матриці системи і ранг розширеної матриці рівні.

Якщо , тоді ранг матриці системи і ранг розширеної матриці системи (3) менше числа . Припустимо, що вони дорівнюють . Тоді система (3) має нескінченну множину розв’язків

,

де  - довільне дійсне число, а  - алгебраїчні доповнення елементів -го рядка матриці системи. Дійсно, підставляючи ці числа в ліві частини рівнянь системи (3), одержимо:

Рівняння системи перетворились в тотожності, так як якщо сума

дорівнює нулеві (ця сума є сумою добутків елементів -го рядка визначника на алгебраїчні доповнення другого -го рядка визначника). Якщо  сума

також дорівнює нулеві, так як вона дорівнює визначнику системи , який дорівнює нулеві.

Відмітимо, що при побудові розв’язку системи беруться алгебраїчні доповнення того рядка, де хоч би одне із  не дорівнювало б нулю.


1. Розв’язання систем лінійних рівнянь методом Жордана-Гауса

 

1. Основні означення та результати

Розглянемо систему m лінійних рівнянь з n невідомими:

 (1)

 

Означення. Розв’язком системи (1) називається сукупність значень невідомих

що задовольняють усі рівняння системи (1).

Означення. Система рівнянь (1) називається сумісною, якщо вона має принаймні один розв’язок, і несумісною, якщо вона не має розв’язків.

Система рівнянь називається визначеною, якщо вона має лише один розв’язок, і невизначеною, якщо вона має безліч розв’язків.

Дві системи рівнянь з однаковими невідомими називаються рівносильними, якщо кожний розв’язок однієї системи є розв’язком іншої системи або якщо ці системи рівнянь несумісні.

У результаті еквівалентних перетворень системи рівнянь завжди дістаємо рівносильну систему рівнянь. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Банковская система: история, сущность, развитие
Просмотров:152
Описание: Содержание Введение 1. История возникновения и роль банковской системы 2. Сущность и функции банковской системы РФ 3. Структура банковской системы РФ, ее характеристика Заключение Список использованн

Название:Система наказаний и его виды в судебной практике России
Просмотров:90
Описание: Содержание   Введение 1. Наказание: его понятие, признаки и цели 1.1 Понятие уголовного наказания и его признаки 1.2 Цели наказания 2. Система наказаний и его виды 2.1 Современное состояние системы нак

Название:Методи розрахунку аберацій оптичної системи
Просмотров:152
Описание: Методи розрахунку аберацій оптичної системи 1. Розрахунок аберацій оптичної системи Значення аберацій оптичної системи одержують як різницю координат ідентичних точок реаль

Название:Понятие, предмет, метод и система трудового права
Просмотров:56
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное агентство по образованию Тихоокеанский государственный экономический университет Кафедра Гражданского права и процесса

Название:Фазові кутові моноімпульсні системи
Просмотров:269
Описание: Фазові кутові моноімпульсні системи 1. Фазовий кутовий пеленгатор У оглядових моноімпульсних системах із фазовою пеленгацiєю напрямок на ціль визначається порівнянням ф

 
     

Вечно с вами © MaterStudiorum.ru