MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Прямой метод вращения векового определителя

Название:Прямой метод вращения векового определителя
Просмотров:136
Раздел:Информатика, программирование
Ссылка:Скачать(78 KB)
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное  агентство по образованию Государственное  образовательное учреждение Высшего профессионального образования «Оренбургский государс

Часть полного текста документа:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное  агентство по образованию

Государственное  образовательное учреждение

Высшего профессионального образования

«Оренбургский государственный университет»

Факультет экономики и управления

Кафедра  математического обеспечения информационных систем

КУРСОВАЯ РАБОТА

 

по дисциплине «Численные методы»

Прямой метод вращения векового определителя

ОГУ 061800.8006.18 ООО

Руководитель работы

____________________Ващук И.Н.

 «_____» _______________ 2006 г.

Исполнитель   студент гр. 04ММЭ

________________Широбоков П.Д.

«_____» ________________ 2006 г.

Оренбург 2006


Оглавление

 

Введение. 3

Постановка задачи.. 4

Описание метода. 5

Сходимость метода. 8

Описание входных и выходных данных.. 9

Заключение. 10

Список литературы.. 11

Приложение А... 12

Приложение Б.. 19


Введение

Численные методы решения проблемы собственных значений до конца 40-х годов, сводились, в основном, к решению характеристического уравнения. При реализации такого подхода, основные усилия были направлены на разработку эффективных методов быстрого вычисления коэффициентов характеристического уравнения. Такие методы имеют названия прямых. Популярным методом этого типа является метод Данилевского. Он давал довольно большую погрешность, но в тоже время имел очень большую скорость получения результата.

Мы предпримем попытку анализа возможности использования этого метода в современных условиях. Попытаемся обозначить возможные границы применения этого метода, и так же найти области науки, где пользоваться методом Данилевского было бы очень удобно.  


Постановка задачи

Большое число задач математики и физики требует отыскания собственных значений и собственных векторов матриц, т.е. отыскания таких значений +, для которых существуют нетривиальные решения однородной системы линейных  алгебраических уравнений

 ,                                           (1)

и отыскания этих нетривиальных решений.

Здесь  -квадратная матрица порядка m , - неизвестный  вектор - столбец.

Из курса алгебры известно, что нетривиальное решение  системы (1) существует тогда и только тогда, когда

,                               (2)

где Е - единичная матрица. Если раскрыть определитель  , получим алгебраическое уравнение степени m  относительно .Таким образом задача отыскания собственных значений сводится к проблеме раскрытия определителя   по степеням  и последующему решению алгебраического уравнения  m- й  степени.

Определитель  называется         характеристическим  (или вековым ) определителем, а уравнение  (2)  называется  характеристическим  (или вековым ) уравнением.

Различают полную проблему  собственных значений, когда необходимо отыскать все собственные значения матрицы А и соответствующие собственные векторы, и частичную проблему собственных значений, когда необходимо отыскать только некоторые собственные значения, например, максимальное по  модулю собственное значение .


Описание метода

Идея метода Данилевского состоит в том, что матрица А приводится к “нормальной форме Фробениуса”, имеющей вид:  .

Характеристическое уравнение для матрицы  Р  имеет простой вид

т.е. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Определитель матрицы
Просмотров:137
Описание: Дисциплина: Высшая математика Тема: Определитель матрицы 1. Понятие определителя Матрица - это прямоугольная таблица, составленная из чисел. Особое место среди матриц занимают

Название:Определитель матрицы
Просмотров:139
Описание: Оглавление   Задача 1 Задача 2 Задача 3 Задача 4 Задача 5 Задача 1   Вычислить определитель 4-го порядка. Решение: Определитель 4-го порядка находится по формуле:  , где aij – эл

Название:Осмысление понятия "смысловой матрицы культуры" на материале философии В.С. Стёпина
Просмотров:106
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНЕЦКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА ФАКУЛЬТЕТ ФИЛОСОФИИ И РЕЛИГИОВЕДЕНИЯ КАФЕДРА ФИЛОСОФИИ Творческая работа на тему: Осмы

Название:Разработка технологического процесса изготовления матрицы
Просмотров:67
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОЛЬЯТТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-ТЕХНОЛОГИЧЕСКОЕ ОТДЕЛЕНИЕ КАФЕДРА “ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ ” ДИПЛОМНЫЙ ПРОЕКТ на те

Название:Умножение матрицы. Теория вероятности
Просмотров:72
Описание: ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "СИБИРСКАЯ АКАДЕМИЯ ГОСУДАРСТВЕННОЙ СЛУЖБЫ" ИНСТИТУТ ПЕРЕПОДГОТО

 
     

Вечно с вами © MaterStudiorum.ru