MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Компактные операторы

Название:Компактные операторы
Просмотров:152
Раздел:Математика
Ссылка:Скачать(194 KB)
Описание: Содержание Введение........................................................................................................... 3 §1. Основные понятия и определения............................................................. 4 1.1. Линейные пространства............................................................

Самые свежие новости со всего мира. Мы работаем для вас 24 часа в сутки.
www.24da.ru
Регистрация доменов RU, SU от 400 рублей. Прогрессивные скидки.
www.direg.ru

Часть полного текста документа:

Содержание

Введение........................................................................................................... 3

§1. Основные понятия и определения............................................................. 4

1.1. Линейные пространства........................................................................... 4

1.2. Нормированные пространства................................................................ 5

1.3. Банаховы пространства............................................................................ 6

1.4. Компактные множества............................................................................ 8

1.5. Линейные операторы и линейные функционалы.................................. 11

1.6. Сопряженные операторы....................................................................... 12

§2. Компактные операторы........................................................................... 13

2.1. Определение компактного оператора................................................... 13

2.2. Свойства компактных операторов......................................................... 13

2.3. Примеры некомпактного и компактных операторов........................... 16

Литература..................................................................................................... 20


Введение

Изучение произвольных линейных операторов представляет собой весьма трудоемкую задачу, однако среди линейных операторов можно выделить классы операторов, которые могут быть рассмотрены более подробно. Данная работа рассматривает основные понятия, свойства, определения и теоремы, связанные с одним из классов линейных операторов – компактными операторами.

Работа состоит из двух параграфов. Первый из них содержит предварительные сведения, необходимые для рассмотрения темы: понятия пространств, которые необходимы при изучении компактных операторов, понятия линейного оператора и линейного функционала, сопряженного оператора, компактного множества. Во втором параграфе рассмотрено определение компактного оператора, основные свойства этого класса операторов и примеры компактных и некомпактного оператора.


§1. Основные понятия и определения.

 

1.1 Линейные пространства.

 

Определение: Непустое множество  элементов называется линейным, если оно удовлетворяет таким условиям:

I. Для любых двух элементов  определен единственный элемент , называемый суммой и обозначаемый , причем

1) ;

2) ;

3) в существует такой элемент 0, что  для всех ;

4) для каждого существует такой элемент , что .

II. Для любого числа  и любого элемента  определен элемент , причем

1) ;

2) ;

3) ;

4) ;

([1], стр. 120).

Примеры линейных пространств

1. Пространство действительных чисел  является линейным пространством по операциям сложения и умножения.

2.  – пространство, элементами которого являются последовательности чисел , удовлетворяющих условию   с операциями ,

([1], стр. 121).


1.2 Нормированные пространства

 

Определение: Множество  называется нормированным пространством, если:

1)  – линейное пространство над полем действительных или комплексных чисел.

2) Для каждого элемента  определено вещественное число, называемое его нормой и обозначаемое , и выполнены условия:

а) для любого ;

б)  для любого  и любого ;

в) , для любых

([1], стр. 138).

Примеры нормированных пространств:

1. Пространство  становится нормированным, если положить .

2. Пространство  с элементами  нормировано, при условии .

3. Пространство  функций, непрерывных на отрезке , нормировано, если взять .

([1], стр. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Определение диаметра молекул
Просмотров:491
Описание: Муниципальное общеобразовательное учреждение «Основная общеобразовательная школа №10» Определение диаметра молекул Лабораторная работа Исполнитель: Масаев Евгений 7 класс «А» Р

Название:Основные элементы методологии государственной кадровой политики
Просмотров:231
Описание:   Основные элементы методологии государственной кадровой политики Содержание 1. Методологические основы государственной кадровой политики 1.1 Понятие и методологичес

Название:Понятие и особенности аграрных правоотношений, их элементы
Просмотров:188
Описание: Понятие и особенности аграрных правоотношений, их элементы   Нормы аграрного права, как и любые другие правовые нормы, вводят для того, чтобы определенным образом урегулировать общественные отношения суб

 
     

Вечно с вами © MaterStudiorum.ru

.