Міністерство освіти і науки України
Львівський національний університет імені Івана Франка
Кожан Роман Володимирович
УДК 517.98
КАТЕГОРНІ ВЛАСТИВОСТІ ПРОСТОРІВ ЙМОВІРНІСНИХ МІР ТА ГІПЕРПРОСТОРІВ ВКЛЮЧЕННЯ
01/01/01 математичний аналіз
АВТОРЕФЕРАТ
дисертації на здобуття наукового ступеня
кандидата фізико-математичних наук
Львів-2008
Дисертацією є рукопис.
Робота виконана на кафедрі геометрії і топології Львівського національного університету імені Івана Франка Міністерства освіти і науки України
Науковий керівник:
доктор фізико-математичних наук, професор
Зарічний Михайло Михайлович,
декан механіко-математичного факультету,
завідувач кафедри геометрії і топології,
Львівського національного університету імені Івана Франка
Офіційні опоненти
доктор фізико-математичних наук, професор
Загороднюк Андрій Васильович,
завідувач кафедри математичного аналізу Прикарпатського національного
університету імені В. Стефаника
доктор фізико-математичних наук, професор
Маслюченко Володимир Кирилович,
завідувач кафедри математичного аналізу, Чернівецького національного
Університету імені Ю. Федьковича
Захист відбудеться 17 квітня 2008 р. о 15 год. 30 хв. на засіданні спеціалізованої вченої ради Д 35.051.18 Львівського національного університету імені Івана Франка за адресою: 79000, м. Львів, вул. Університетська, 1, ауд. 377
З дисертацією можна ознайомитись у Науковій бібліотеці Львівського національного університету імені Івана Франка за адресою: м. Львів, вул. Драгоманова, 5.
Автореферат розісланий 13 березня 2008 р.
Вчений секретар спеціалізованої вченої ради Тарасюк С.І.
ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ
Актуальність теми. Багато конструкцій функціонального аналізу, топологічної алгебри, загальної топології є функторіальними у відповідних категоріях. Прикладом може служити конструкція простору ймовірнісних мір (невід'ємних нормованих адитивних функціоналів на просторах неперервних функцій), яка визначає коваріантний функтор на категорії компактних гаусдорфових просторів. Властивості функтора ймовірнісних мір стали предметом дослідження багатьох математиків. Зокрема, А. Пелчинський[1] застосував простори ймовірнісних мір до задачі топологічної класифікації банахових просторів неперервних функцій на компактних гаусдорфових просторах. У своїй монографії Пелчинський виділив два класи компактних гаусдорфових просторів: простори Мілютіна та простори Дугунджі.
Систематичне дослідження функтора ймовірнісних мір провів Є.В. Щепін[2] у 1981 році в рамках створеної ним загальної теорії нормальних функторів у категорії компактів. Зокрема, він показав глибокий зв'язок між властивістю відкритості функтора ймовірнісних мір і властивістю бікомутативності, тобто властивістю зберігати клас бікомутативних діаграм в сенсі К. Куратовського.
Є.Щепін довів, що з відкритості нормального функтора випливає його бікомутативність і сформулював проблему про еквівалентність цих двох умов (для випадку нормальних функторів скінченного степеня еквівалентність умов відкритості та бікомутативності довів М. ............